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Abstract. A study is presented of the dynamics of a few body system of microparticles by using rank-
ordering statistics in order to gain insight in the magneto-rheological properties of ferrofluids. This dy-
namical system is made up of micrometer sized plastic spheres dispersed in a ferrofluid driven by external
magnetic fields. The world lines of the microspheres are captured and the dynamical modes are described by
mathematical braid theory. Rank-ordering statistics on these modes shows a wide power law region consis-
tent with the Zipf-Mandelbrot relation. We have also performed numerical simulations of the experimental
system which show results in agreement with the observations.

PACS. 05.45.-a Nonlinear dynamics and chaos – 83.10.Pp Particle dynamics – 02.10.Kn Knot theory –
75.75.+a Magnetic properties of nanostructures

1 Introduction

An understanding of the magneto-rheological (MR) prop-
erties of ferrofluids [1] is of general interest for both fun-
damental research [2], and industrial application. Ferroflu-
ids change their viscous properties when subjected to an
external magnetic field, which is exploited for e.g. damp-
ing systems in passenger vehicles and damping systems
for protecting buildings and bridges from earthquakes and
windstorms [3]. This so called magnetoviscous effect was
first observed by McTague [4]. This effect can be explained
by magnetic torques acting upon the ferromagnetic par-
ticles in the suspension [5]. In diluted ferrofluids rotary
Brownian motion of non-interacting rigid dipoles experi-
ences a rotational friction [6]. This has been shown to give
an additional enhancement of the viscosity. The rotational
viscosity is not well explained in semi-diluted ferrofluids in
external oscillating or rotating fields. This is partly caused
by the lack of understanding of the dynamical processes
that take place. It has been proposed that the discrepancy
between theoretical predictions and the experimental re-
sults are due to interactions among ferrofluid particles,
formation and break-up of chains [7–9]. Some of these pro-
cesses may be uncovered and clarified by studying simi-
lar systems of magnetically interacting particles with sizes
in the optically visible micrometer range. One such sys-
tem is created when micrometer sized plastic particles are
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dispersed in a ferrofluid. Then the magnetic voids create
so-called magnetic holes [10]. As will be shown below this
system exhibits complex formation and break-up of parti-
cle chains.

The magnetic holes system has proven to be a fruit-
ful model for studying cooperative dynamical processes.
Using microparticles of size >10 µm the thermal motion
is negligible and the only forces which have to be taken
into consideration are the viscous and magnetic forces. In
this study braid theory will be used for describing the dy-
namical modes of the colloidal particles. The braid theory
gives a compact description of entangled lines in three di-
mensional space, e.g. the spatiotemporal dynamics of par-
ticles moving in two dimensions [11,12], braided magnetic
lines [13], and fluid flow dynamics [14,15]. For particle dy-
namics the idea is to transform the real trajectories of the
particles in space-time to the corresponding symbolic se-
quence according to braid theory, see Figure 1. A symbol
σi in our notation, denoted the braid generator, tells how
two particles move relative to each other.

Dynamical systems may be described by simple laws,
but give rise to richly intricate structures and complex be-
havior. Their dynamical modes may be distributed over
a large energy range or other corresponding measurable
quantities. In intermittent systems these modes have a
broad distribution of frequencies. One way of making a
systematic study of these modes is by ordering them af-
ter their occurrence frequencies. We let the mode which
occur most often be ranked as number 1, the second most
occurring mode be ranked number 2, and so forth to the
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Fig. 1. Application of braid notation to particle dynamics. (a)
The two-dimensional motion of 7 microspheres is extended to
(b) three-dimensional space-time with the trace of each particle
in time. (c) The strands are numbered from top to bottom rel-
ative to the y-axis. When two particles (i and (i+1)) exchange
places relative to the y-axis the notation is σi for counterclock-
wise rotation and σ−1

i for clockwise rotation. The motions of
the 7 microspheres are taken from an experiment with seven
spheres, ε = 0.67, and ω = 0.23.

least occurring mode which have the highest rank num-
ber. This rank-ordering statistics [16] takes care of both
common and rare events at the same time and this proce-
dure is useful for displaying the whole range of the mode
distribution.

A remarkable feature found by rank-ordering statistics
in many different systems is the Zipf relation. This rela-
tion has been found in a variety of applications, such as
linguistics [17], energy distribution of earthquakes [18] and
in analyzing the coding and non-coding regions of DNA
sequences [19]. The original Zipf relation came into being
in an empirical manner in linguistics. By analyzing the
occurrence of words in large written texts G.K. Zipf pro-
posed a simple power law φ(r) ∼ r−γ with γ = 1, where
φ(r) is the frequency of occurrence of a word with rank
r [17]. The origin of this relation has been connected to

Fig. 2. The experimental set-up.

the hierarchical structures of languages [20], and gives the
corrected Zipf-Mandelbrot relation [21]:

φ(r) =
A

(r + ζ)γ
, (1)

where A is a normalization constant and ζ is a parameter.
In this work we report experiments and numerical simula-
tions on a dynamical system, the magnetic holes system,
which shows this Zipf-Mandelbrot relation.

The words in linguistics or the code of DNA sequences
carry information. Dynamical systems, like the magnetic
holes system, also generate information which is contained
in the variety of the modes. This information can be quan-
tified in terms of the Shannon entropy [22] together with
its related redundancy.

The paper is organized as follows. In Section 2 we in-
troduce the notion of magnetic holes and describe our ex-
perimental system. In Section 3 we present a simple model
for this system, and Section 4 describes how we analyse
the motion in terms of braid theory. The results from both
experiments and numerical simulations are given in Sec-
tion 5. Here we find that the rank-ordering statistics gives
results according to the Zipf-Mandelbrot relation. In ad-
dition there are discussions on the temporal correlations
and on the information content of the system in terms
of Shannon entropy. A short summary of the results are
given in Section 6. Finally, the Appendix gives a more de-
tailed explanation of the elements of braid theory used in
this work.

2 Experiment

The magnetic holes system is easily realized by dispers-
ing uniformly sized polystyrene spheres [23] with diameter
50 µm in a ferrofluid [24] which is confined to a ∼100 µm
thin layer, Figure 2. The ferrofluid consists of nm-sized
magnetite particles dispersed in kerosene. In the magnetic
holes system external magnetic fields induce a magnetic
moment on the microparticles, where all moments have
equal strength and direction. When the external magnetic
field is rotating, the microparticles perform a collective
motion. The rotational and translational diffusion of the
particles is negligible for the present system.

The external planar, elliptically polarized field H(t) is
produced by two pairs of coils mounted perpendicular to
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each other carrying AC current with a phase difference of
π/2. The amplitude components Hx and Hy are varied by
adjusting the maximum current through a pair of coils.
The field anisotropy parameter is defined as ε = Hy/Hx.
For the experiments presented in this study we use Hx =
27 Oe.

In a slowly rotating external magnetic field, the mi-
crospheres try to line up in chains parallel with the field.
Due to viscous forces there will be a phase lag between
the direction of the magnetic field and the chains of micro-
spheres. The chains will furthermore break up in smaller
subchains and perform a half rotation before aligning
again. For example, a chain of 7 microspheres was ob-
served to split into groups of 3 + 2 + 2 or 3 + 3 + 1. A
circularly polarized magnetic field gives a highly periodic
motion where the chain divides into groups with close to
equal number of spheres [25]. In an elliptically polarized
magnetic field, on the other hand, the division into sub-
chains is so irregular that we get an apparently disordered
behavior. In the frequency range studied here, the micro-
spheres are nearly co-linear every half period of the ex-
ternal field. This suggests that in order to investigate the
main dynamics we can focus on what happens along a
fixed direction.

3 The simulation model

The microspheres are diamagnetic and will modify the
magnetic field in the ferrofluid by introducing nonmag-
netic voids, called magnetic holes [10]. Due to the demag-
netization of the void, the magnetic hole will carry an
apparent magnetic moment m(t), located in the center of
the microsphere and pointing in opposite direction of the
magnetic field H(t). Its strength is proportional to the
volume V of displaced ferrofluid, the ferrofluid’s effective
susceptibility χeff and the field H(t),

m(t) = −χeff V H(t), (2)

where χeff = 3χ
3+2χ includes the demagnetization factor of

a sphere, and χ is the bulk magnetic susceptibility of the
ferrofluid.

These magnetic holes interact via dipole interactions,
and the interaction energy U for a collection of n magnetic
holes is given by:

U(r1, ..., rn, t) =

{∑n
i>j

m2(t)
r3

ij
− 3·[m(t)·rij ]

2

r5
ij

, rij > d

∞, rij < d
(3)

where rij = ri − rj is the vector joining the centers of the
magnetic holes and d is the diameter of a microsphere.
The magnetic force on particle i is then:

F M
i =

∂U(r1, ..., rn, t)
∂ri

. (4)

The viscous force on a microsphere is to first order given
by Stokes’ law:

F Stokes = 3πηdv, (5)

where η is the viscosity of the ferrofluid and v the velocity
of the sphere. Since the diameter of the microspheres and
their velocities are relatively small, the Reynolds number,
Re = ρvd/η � 1, where ρ is the ferrofluid density. The
system is therefore overdamped and we may neglect the
inertia forces [26]. By assuming equilibrium between the
magnetic and viscous forces,∑

F = F M + F Stokes = 0, (6)

we can easily transform the equation of motion into a nu-
merically solvable form [11].

The angular velocity ωH of the external field is normal-
ized by the critical angular velocity ωc for stable rotation
of two microspheres with a circularly polarized magnetic
field [26]:

ω = ωH/ωc, (7)

where ωH = 2πf and f is the frequency of the rotating
magnetic field. At ωc a chain of two microspheres starts to
show phase-slips relative to the magnetic field, and in our
experiments this upper angular velocity for stable rotation
is ωc = 2π · 0.62 s−1.

4 Data analysis and braid theory

The motion of the n interacting magnetic holes is observed
with a light microscope and the images are acquired with
an attached video camera and recorded and digitized on
a workstation. Typically 5 images per second are grabbed
and analyzed by the workstation. A computer program
is used to map the positions of the microspheres in the
(x, y)-plane in real time, Figure 1a. Our next step in the
analysis is to include the time, in order to obtain a space-
time diagram (x, y, t), thus, creating the world-lines of the
microspheres. In this way we essentially “freeze” the dy-
namics of the microspheres at all times, Figure 1b. The
geometrical braid, Figure 1c, will appear when projecting
the space-time trajectories onto one of the spatial axis [25].

The braid generators, σi, are read out from the geomet-
rical braid and the resulting sequence of braid generators
gives the braidword. The set of all braids with n-strands
is the Artin braid group Bn, containing every possible ro-
tations of n magnetic holes. The braidwords found in ex-
periments may not be topologically unique due to contin-
uous deformations [27]. The challenge is to find a scheme
to determine whether two braidwords are equivalent and
thereby describe the same dynamics. This so called word
problem has been solved for Bn [28]. A refinement of this
solution, the Garside algorithm which is used in this anal-
ysis, is found in reference [29], see Appendix A.

After running through the Garside algorithm the
braidword are represented by an ordered set of positive
permutation braids. The positive permutation braids are
small parts of the braidword and belong to a subset of Bn

with two additional criteria: 1) the strands of space-time
diagram have only overcrossings; and 2) two strands can
cross each other only once.
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Table 1. The experimental parameters, n, ε, and ω, and the values for the best fit of the data set to equation (1) for four
experiments.

Exp. n ε ω A ζ γ
1 7 0.67 0.23 3.2 ± 0.1 5.3 ± 1.0 1.8 ± 0.1
2 7 0.83 0.44 0.68 ± 0.10 1.7 ± 0.5 1.4 ± 0.1
3 11 0.64 0.22 0.12 ± 0.05 1.2 ± 0.2 0.98 ± 0.10
4 20 0.64 0.15 0.0091 ± 0.0005 1.5 ± 0.2 0.80 ± 0.08

The so called factorial coordinate method [29] is a con-
venient and unique way of labelling the different posi-
tive permutation braids. The algorithm for this method
is given by the expression:

g(τ) =
1 + g1(τ)1! + ... + gn−1(τ)(n − 1)! with 0 ≤ gi(τ) ≤ i.

(8)

The factorial coordinate gi(τ) counts the number of cross-
ings of string i + 1 with lower number strings within the
positive permutation braid g(τ) after a time τ . One per-
mutation braid typically corresponds to one half period of
the rotating magnetic field.

The system is driven by an external rotating magnetic
field so the system of magnetic holes as a whole will ro-
tate, or in braid theory language obtain a positive half
twist. This effect is particularly important for a low num-
ber of spheres (n < 10) and low field anisotropy (ε > 0.7).
Since the motion of the microspheres is captured in the
laboratory frame the braid includes these unwanted half
twists. The Garside algorithm will extract these positive
half twists. The finale positive permutation braids contain
all the essential information about the dynamics, and are
taken as a measure of the physical modes.

5 Results and discussion

In this study we focus mainly on experiments with seven
microspheres that have the anisotropy parameter ε be-
tween 0.58 and 0.85, and the angular frequency ω in the
range 0.23 < ω < 0.45. In these parameter ranges in-
termittent behavior is observed. This behavior generates
many different modes with different frequency of occur-
rence, and is easily studied with the rank-ordering statis-
tics. Outside these parameter ranges more regular behav-
ior is observed. For experiments with a higher number of
spheres n, we have studied what happens around ε = 0.64.
The experiments were run from 4 to 13 h. In this work we
present four different experiments with different n, ε, and
ω values. The experimental values are summarized in Ta-
ble 1.

The motion is grabbed and analyzed by a computer
in real time. In this analyzing process the coordinates of
each sphere is found, Figure 1a and 1b, and also the braid
generators, Figure 1c. Two factors are striking when ob-
serving the motion of the spheres:

1. the spheres start out in a line and get almost aligned
after one half period of the external rotating field. Dur-

ing this half period the line of spheres breaks up into
smaller units before realigning;

2. some typical and stable modes occur frequently over
some time. Then the motion is changing via a cascade
of different and rarer modes for some time before reach-
ing a stable mode again. This resembles intermittent
behavior.

The first factor emphasizes that the time span for a dy-
namical mode is around one half period of the external
rotating magnetic field. The second factor suggests that
the system behaves like a scaling tree, similar to the lexi-
cographic tree described by Mandelbrot for word frequen-
cies in linguistics [30]. He used this scaling tree to derive
the Zipf-Mandelbrot relation. A similar approach can be
used to derive this relation for the system under study
here [31].

5.1 Rank-ordering statistics

A small part of experiment No. 1 with ε = 0.67 and
ω = 0.23 is displayed in Figure 1. Seven spheres trace
out their world lines and are projected into a braidword.
The different dynamical modes of this experiment are
measured and displayed in terms of their corresponding
g-values in Figure 3. We obtain 365 different dynamical
modes in the experiment, while for the numerical simula-
tions with same duration we obtain 392 different modes.
A significant feature is that a small set of modes appears
frequently and is interrupted by rarer modes. Small varia-
tions in the system parameters might lead to large changes
in the braidword and the g-values. This can be seen in the
differences between the experiment, Figure 3a, and the
simulation, Figure 3b, which have nominally equal param-
eter values. However, these minor changes do not change
the overall statistical properties of the dynamics.

We then apply rank-ordering statistics to these braid
permutations. In rank-ordering statistics we count all the
different modes and rank them afterwards. The rank r of
a mode is defined such that the most frequently occurring
mode gets the rank r = 1, the next most frequently used
mode gets rank 2, etc. The frequency of occurrence φ(r) is
normalized:

∑N
r=1 φ(r) = 1, where N is the total number

of different modes. Including all types of positive permu-
tation braids for n strands, N = n! . For the case of seven
microspheres we have N = 5040 possible modes.

The rank-ordering analysis of the positive permuta-
tion braids is shown in a double logarithmic plot in Fig-
ure 4. The data may be fitted to a straight line with a
slope −1.6 ± 0.1 for r > 5. However, a nonlinear fit on



K. de Lange Kristiansen et al.: Braid theory and Zipf-Mandelbrot relation used in microparticle dynamics 367

0 250 500 750 1000
τ

0

2000

4000

6000

g(
τ)

(a)

0 250 500 750 1000
τ

0

2000

4000

6000

g(
τ)

(b)

Fig. 3. The dynamics of 7 microspheres in an external rotating
magnetic field is displayed in terms of the factorial coordinates
of the positive permutation braids g(τ ) as a function of the time
τ for (a) experiment No. 1 and (b) its corresponding simula-
tion. The most frequent modes (e.g. groups of 1+3+3 spheres,
g = 1575 (experiment) or 3 + 2 + 2 spheres, g = 750 (simula-
tion)) reflect the symmetry in the system as opposed to rarely
occurring modes (e.g. 1 + 1 + 1 + 3 + 1 spheres, g = 265).

the whole r-range to the Zipf-Mandelbrot relation, equa-
tion (1), gives a better fit with parameters A = 3.2± 0.2,
ζ = 5.3 ± 1.0 and γ = 1.8 ± 0.1 for both experiment and
simulation. A simulation with four times longer duration
gives 448 different types of dynamical modes, however the
fit gives the same parameter values. This is a common fea-
ture for all our results presented here. A large subgroup
of the data displays the same form of Zipf-Mandelbrot
relation. The only difference is that some of the modes
occurring a few times are not present.

Similar behavior to that discussed above is also ob-
served for experiments with other values of ε and ω , and
the exponent γ is found to be between 1.1 and 1.9, as first
reported in reference [32]. The experiment No. 2 is an ex-
ample with ε = 0.83 and ω = 0.68. The rank-ordering
analysis of this experiment gives a Zipf-Mandelbrot rela-
tion between φ(r) and r, Figure 5, with exponent γ = 1.4.
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Fig. 5. The frequency of occurrence of braid permutations
φ(r) versus its rank r found in the dynamics of 7 microspheres
with ε = 0.83 and ω = 0.44, experiment No. 2. Typical values
of the error bars are shown for three points.

The value of the exponent γ found in the simulations
sometimes shows slightly higher value than that obtained
from the corresponding experiment. This difference be-
tween experiment and simulation may be due to higher
order effects neglected in the simulation, such as hydro-
dynamic interaction between microspheres and hydrody-
namic and magnetic interaction due to confinement of
the ferrofluid by the walls. In dispersed systems, such
as colloidal suspensions, complicated flow behaviors occur
even at low Reynolds numbers. Despite its long-recognized
ubiquity, hydrodynamic coupling in colloidal suspensions
is not completely understood [33].

The Zipf-Mandelbrot relation is observed in systems
with higher number of spheres as well. Figures 6 and 7 are
examples of 11 and 20 spheres, respectively. For both cases
we used ε = 0.64. The results are summarized in Table 1.
When increasing the number of spheres the number of
possible modes increases rapidly. For eleven spheres there
exist 11! � 4.0 × 107 possible modes, while we obtained
only 2200 modes in experiment No. 3. Twenty spheres
have 20! � 2.4 × 1018 possible modes and the simulation
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Fig. 6. The frequency of occurrence of braid permutations φ(r)
versus its rank r found in the dynamics of 11 microspheres with
ε = 0.64 and ω = 0.22, experiment No. 3. Typical values of the
error bars are shown for three points.

Fig. 7. The frequency of occurrence of braid permutations φ(r)
versus its rank r found in the dynamics of 20 microspheres with
ε = 0.64 and ω = 0.15, simulation No. 4. Typical values of the
error bars are shown for four points.

gave only 30 000 modes. To observe a behavior obeying
the Zipf-Mandelbrot relation for systems with n ≥ 10, we
need experiments over a longer time span in order to get
good statistics. The exponents fitted to the experiment
and simulation are both below 1 and significantly lower
than for the seven spheres case.

5.2 Temporal correlation

To get a measure of the temporal correlation of the pos-
itive permutation braids in the system we calculate the
mode-mode correlation between modes of rank r and r′:

Cr,r′(t) = 〈δr,r(g(τ))δr′,r(g(τ+t))〉, (9)

where brackets indicate averaging over all times τ , r(g(τ))
means the rank corresponding to mode g(τ) and t is a time
interval measured in units of one permutation braid. The
exact numerical value of the g(τ)’s are of little interest
here since that is only a way of systematic labelling. The
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Fig. 8. (a) The time correlation of the braid permutations C(t)
displayed on a semi-log plot. The time t is measured in number
of permutation braids in the braidword. The correlation of the
mode with rank r = 1, C1,1(t) (scaled up by a factor 2) from
the experimental data of experiment No. 1, is also shown. (b)
The correlations between the most frequently occurring mode,
r = 1, and the modes with rank 2 and 10, respectively, taken
from experiment No. 1.

time correlation C(t) is defined as:

C(t) =
N∑

r=r′=1

Cr,r′(t). (10)

When no correlations between the permutation braids are
left in the system, we expect a crossover to a plateau at
level K in C(t):

K =
N∑

r=1

φ(r)φ(r). (11)

The correlation between the modes in experiment no. 1 is
short ranged and decays logarithmically for 1 < t < 6 as
shown in Figure 8, and thereafter shows a plateau. Similar
decay is found for the other experiments. The correlation
of modes with low r-value dominates C(t), as e.g. C1,1(t)
for r = 1, reflecting that dominating modes occur in se-
quences. For 7 microspheres the plateau after the cutoff
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Fig. 9. The experiment from Fig. 4 together with a Markov
process with transition matrix based on this experiment.

can be calculated from equation 1 using the fitted pa-
rameter values, K = 0.043, in good agreement with Fig-
ure 8a. We have also calculated the correlations C1,2(t)
and C1,10(t) between the modes with rank 1 and 2, and 1
and 10, respectively, as shown in Figure 8b. The C1,x(t)
rises to a constant level depending on the rank x. A char-
acteristic feature is that a dominating mode tends to be
interrupted by another mode within the decay time of
C(t).

The correlation up to t = 6 is the result of clustering
of the modes. If we randomize the order in the sequence
of modes, these correlations disappear and only a plateau
is left, as expected.

Markov processes have been used to explore Zipf rela-
tion in linguistics [34]. We will use the same procedure to
investigate the effect of correlations of the braid genera-
tors. A one step Markov chain is generated using the con-
ditional probability P (σi|σj) of achieving σi given σj . The
P (σi|σj) is found from the actual experiment. For a com-
pletely random sequence of braid generators, P (σi|σj) = c
for all i and j, which gives a flat Zipf-Mandelbrot plot.
With a correlation time shorter than that of the current
experiment the Markov process will give a more random
sequence of braid generators. As seen above the experi-
ment has correlation length of t ∼ 5. This means that
the correlation length is about 30 braid generators, as one
time step contains one mode and a typical frequent mode
was found to be about 6 braid generators. Thus we ex-
pect a much broader distribution of the modes when using
the Markov process compared to the experimental results.
This is indeed what we see in Figure 9, where the param-
eters are: A = 4.6, ζ = 57, and γ = 1.5.

5.3 Information and redundancy

The braidword can be viewed as a discrete message built
out of smaller units, which are the positive permutation
braids. The statistics of these units is dominated by those
which transmit the greatest amount of information, and

Table 2. The Shannon entropy H and the redundancy R for
the three experiments in Table 1, where H is calculated using
the values for the best fit, Table 1.

Exp. N H R
1 7 5.43 ± 0.10 0.56 ± 0.01
2 7 5.96 ± 0.10 0.52 ± 0.01
3 11 6.72 ± 0.10 0.73 ± 0.01
4 20 4.5 ± 1.0 0.93 ± 0.02

is quantified in terms of Shannon entropy H [35]:

H = −
N∑

k=1

φk log2 φk, (12)

where the unit is bits/(mode).
H is a measure of the rate of information which is

produced. For equally probable situations, φk = 1/N !,
and the entropy is maximum, i.e. no prediction of the next
entry. For the case of seven spheres, Hmax = log2 5040 =
12.30. The redundancy R is then defined as [22]:

R = 1 − H

Hmax
. (13)

Table 2 summarizes the entropy and redundancy for each
experiment. The relative high redundancy in these cases
reflects the fact that there exists many more modes than
those found in the experiments. As the number of spheres
increases, the number of possible positive permutation
braids increases as N !. For the experiments in this work
the fraction of observed modes compared to the possible
number of modes decreases as the number of spheres in-
creases. In addition, sequences of the motion repeat from
time to time, thereby increasing the redundancy.

6 Conclusion

Braid theory has been used to study the collective dy-
namical processes, or modes, of magnetically interact-
ing particles in a rotating magnetic field. An n-stranded
space-time braid represented the motions of non-magnetic
microspheres in a thin ferrofluid layer. We extracted the
positive permutation braids and used these as a measure
of the collective modes in the system. The distribution of
these dynamical modes was analyzed using rank-ordering
statistics, and it was found to show a hierarchical struc-
ture of the Zipf-Mandelbrot type. For seven spheres the
exponent γ was between 1.1 and 1.9 for both experiments
and numerical simulations. Similar distributions of the dy-
namical modes were found for systems containing a higher
number of microspheres as well. But for these cases the
exponent γ could also have lower values than 1.1. As
the number of spheres increased, the number of possible
modes increased drastically. The temporal correlation of
the modes decayed logarithmically, as the result of clus-
tering of the most frequent modes. The clustering was also
one of the reasons for the relative high redundancy. This
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showed that many of the possible modes never occurred
in the experiments.

The magneto-rheology of ferrofluids in oscillating or
rotating fields has been extremely difficult to model by
current theories. This may be due to the complexity of
the chain formation and break-up in even such relatively
small particle clusters as studied here. The wide spectrum
of relaxation times and other effects, like shear thinning,
which have been found in these fluids, may have their
origins in the distributions of dynamical modes and chain
lengths. This is similar to what has been found in the
system presented here.

KdLK is grateful to the Research Council of Norway for finan-
cial support (grant NFR 142902/432).

Appendix: The garside algorithm

The aim of this algorithm is to start from a braidword P
and transform it to a right canonical form P = P ′(∆n)q

[28,29]. The P ′ is a sequence of positive permutation
braids: P1, P2,..., PN , and q is the number of posi-
tive half twists ∆n. The positive half twist can be de-
fined inductively in terms of the braid generators: ∆n =
∆n−1σn−1σn−2...σ1 starting with ∆2 = σ1. The n in-
dicates the number of strings. Normally we omit n, i.e.
∆ ≡ ∆n, when it does not lead to any confusion. The
right-canonical form implies that any other braid Q topo-
logically equal to P will give the same exponent q and se-
quence of positive permutation braids P ′, with the twists
on the right hand side of P ′. The P ′ is now the simplest se-
quence of positive permutation braids, and it is irreducible
and unique.

In order to work with positive permutation braids each
negative braid generator in the braidword must be re-
placed. This can be done by rewriting every σ−1

i as D∆−1

where D is a positive braid word. Thereafter all the ∆’s
is moved to the right by using the commutativity of ∆
with all other braid structures B, i.e. ∆ · B = τ(B)∆,
where τ(B) is an automorphism operating on the braid
B. Geometrically it is equivalent to turning the braid up-
side down and is defined as τ(σi) = σn−i. The next step
is to divide the positive braid into a product of positive
permutation braids. In this algorithm we start reading the
braid from left to right and take the longest initial sub-
word as the first permutation. A new permutation braid
is started when any pair of the strings is about to cross
for the second time. This division is continued until the
end of the braid word is reached.

The algorithm prescribes to run through P ′ from left
to right and checks adjacent pairs of permutation braids.
If any crossing of pair of adjacent strings occurs in the
left permutation braid and not in the right, this crossing is
moved to the right permutation braid. This yields two dif-
ferent permutation braids. Each time a positive half twist
is found in the sequence it is moved to the right end of
the braid where it contributes to the power of ∆q with +1.
The algorithm goes on until no more moves or operations

(a)

(b)

P= 1 2 3 2σ σ σ σ σ  σ σ σ σ σ σ 3321321
−1

P P P P3 421

(c)

(d)

(f)

(e)

P= 1 2 3 2 32132(σ σ σ σ )(σ σ σ σ σ )

∆−1

∆−1

∆−1

∆ ∆−1

Fig. A.1. A sequence of moves leading to the right canonical
form of a braid as described in the text.

can be done and the right canonical form of the braid is
found. The right canonical form gives the minimum num-
ber of positive permutation braids that the braid can be
divided into.

Let us apply this algorithm to the example with four
strings shown in Figure A.1, which describes a braid with
the word P = σ1σ2σ3σ2σ

−1
1 σ2σ3σ1σ2σ3σ3. The first step

is to replace any braid generators with negative powers.
The generator σ−1

1 in (a) is replaced by σ2σ3σ1σ2σ1∆
−1

and the negative half twist is moved to the right end of
the sequence, resulting in (b). Working through the braid
in (b) from left to right we partition it into permutation
braids by continuing until a pair of strings are about to
cross for the second time and then start a new permuta-
tion braid, shown in (c). Then we start the algorithm to
check adjacent pairs of permutation braids if any adjacent
pairs of strings cross in the left, but not in the right per-
mutation braid. Starting from the left end of the sequence,
the first such crossing is found in the second permutation
P2 in (c) as indicated by an arrow. This crossing is moved
to the third permutation P3 which yields the two altered
permutation braids P2 and P3 shown in (d). By this al-
ternation, P3 = ∆, which has to be shifted to the right
end of the braid. The permutation braid P4 undergoes
the operation ∆ ·B = τ(B)∆. In this case B = σ1, which
gives τ(σ1) = σ3. This gives the braid sequence shown
in (e). Here, every braid generators in P2 can in fact be
shifted to P3. Since P2 then become the identity braid, i.e.
a braid not containing any braid generator, it does not
contribute to the braid and can therefore be discarded.
At last the ∆ at the end is cancelling out by the ∆−1.
The resulting braid in (f) is the right canonical form of
P consisting of two permutation braids and q = 0, i.e.
P = (σ1σ2σ3σ2)(σ2σ3σ1σ2σ3).
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